2,4,6-TRIMETHOXYPHENYL tert-BUTYL NITRONE (MO)3PBN, AS A DETECTOR OF HYDROXYL RADICALS IN THE PRESENCE OF PEROXIDES, SUPEROXIDE AND PEROXYL RADICALS

Edward G. Janzen^a, Coit M. DuBose and Yashige Kotake

Departments of Clinical Studies and Biomedical Sciences Ontario Veterinary College, University of Guelph Guelph, Ontario N1G 2W1, Canada and Molecular Toxicology Research Group Oklahoma Medical Research Foundation, 825 N.E. 13th Street

Oklahoma City, Oklahoma 73104, USA

Summary: 2,4,6-Trimethoxyphenyl tert-butyl nitrone, (MO)₃PBN is proposed as a spin trap for hydroxyl radicals since the aminoxyl produced from internal trapping of the *ortho*-oxymethylenyl radical gives a unique spectrum not found with peroxyl spin adducts. Superoxide does not produce ESR detectable spin adducts with (MO)₃PBN.

Detection of the hydroxyl radical in the presence of hydrogen peroxide or superoxide using the nitronyl spin trapping method can sometimes lead to erroneous conclusions since the spin adduct of the hydroperoxyl radical is relatively unstable (typical of a secondary hydroperoxide bonded to a free radical function in the β -position) and may itself produce hydroxyl radicals during its decomposition.¹ Thus, a need exists for spin traps which give unique signatures for various oxygen-centered radicals which are specific for each different type of radical.² Recently, the synthesis of 5,5-diethyl-3,3-dimethylpyrroline-N-oxide,³ E₂M₂PO has been reported. It was shown that this nitrone does not react with superoxide to give a spin adduct, hence providing a more unambiguous detector of hydroxyl radicals. This work prompts us to communicate on the reaction of hydroxyl radicals with 2,4,6-trimethoxyphenyl *tert*-butyl nitrone ((MO)₃PBN) as an example of a spin trap where reactions remote from the nitrone eventually produce aminoxyls with unique spectral signatures for the radical detected.

(MO)₃PBN gives a variety of ESR spectra for spin adducts of alkyl radicals.⁴ In general, the β -H hfsc's are larger than in the equivalent structure derived from PBN. From hydroxyl radicals in water, the ESR pattern obtained with (MO)₃PBN consists of 3 sets of 3 lines (Figure 1). Because the intramolecular spin trapping of the oxymethylenyl radical derived from hydrogen atom abstraction from one of the ortho methoxyls is a possible source of the spectrum in Figure 1, the spin trapping reaction of radicals derived from dihydro-2,3-benzofuran by hydrogen atom abstraction was inves-

tigated with 2-methyl-2-nitrosopropane (MNP) using the photolysis of di-*tert*butyl peroxide as the *tert*-butoxyl radical source in benzene:

^a Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

The ESR spectrum observed was very similar to that obtained from (MO)₃PBN except that the Nhfsc was smaller (due to the difference in solvent polarity), namely $a_N = 14.6$, $a_H = 1.7$ (1H), $a_H = 1.0$ (1H)G in benzene. Thus, this spectrum is assigned to II. With di-*tert*-butyl peroxalate (DBPO) in benzene at room temperature, a mixture spectrum was obtained with the following hfsc's: $a_N = 14.4$, $a_H = 1.0$ (2H)G; $a_N = 12.1$, $a_H = 1.25$ (1H), $a_H = 0.55$ (1H)G. The former component is again assigned to spin adduct II. Since the parameters for II are similar to those of the aminoxyl radical detected from the reaction of (MO)₃PBN and hydroxyl radicals, the spectrum in

Figure 1. ESR spectrum obtained from the photolysis (Xe lamp) of 2% hydrogen peroxide in water in the presence of 0.05 M (MO)₃PBN ($a_N = 16.41$, $a_H = 1.49$ (1H), $a_H = 1.0$ (1H)G); essentially the same spectrum is obtained from the photolysis of 1% hydrogen peroxide in benzene and 0.05 M (MO)3 PBN or photolysis of a basic aqueous solution of 0.1 M sodium persulfate in the presence of 0.05 M (MO)₃ PBN.

Figure 1 is assigned to the product of intramolecular spin trapping of the oxymethylenyl radical produced from hydrogen atom abstraction (the difference in an is due to the polar solvent effect):

No ESR spectra were obtained from (MO)₃ PBN and superoxide generated *in situ* from paraquat or from the xanthine/xanthine oxidase system.⁵ Also, the spectrum due to III is not obtained from peroxyl radicals. Only "normal" adducts are found from reacting DBPO with *tert*-butyl or cumene hydroperoxide at room temperature in benzene (Figure 2):

With time, the spectra due to these adducts decay (over two hours), leaving a triplet of doublets ($a_N = 14.10$, $a_\beta^H = 4.64$ G) tentatively assigned to the actual hydroxyl adduct of (MO)₃PBN. Of importance is the apparent greater persistence of the peroxyl adducts of (MO)₃PBN than of those obtained from PBN. The normal hydroxyl adduct is apparently also obtained in water ($a_N = 16.21$, $a_\beta^H = 8.85$ G) as a minor component (see Figure 1) but this aminoxyl may be the result of hydrolysis of the radical cation of (MO)₃PBN formed by electron transfer. It should be noted that in addition to III a triplet of doublets is also obtained with *tert*-butoxyl or with *iso*-butoxyl radicals (Figure 3).

Figure 2(a). Esr spectrum obtained from the thermolysis of 0.02 M di-tert-butyl peroxalate in the presence of 0.1 M tert-butyl hydroperoxide and 0.05 M (MO)₃PBN in benzene; $a_N = 13.25$, $a_B^H = 4.74$ G.

10 G

Figure 3(a). Esr spectrum obtained from the photolysis of 0.05 M isobutyl nitrite in the presence of 0.05 M (MO)₃PBN in benzene; $a_N = 13.97$, $a_B^H = 8.86$ G.

Figure 2(b). Esr spectrum obtained from the thermolysis of 0.04 M di-<u>tert</u>-butyl peroxalate in the presence of 0.2 M cumyl hydroperoxide and 0.05 M (MO)₃PBN in benzene; $a_N = 13.21$, $a_R^H = 5.08$ G.

Figure 3(b). Esr spectrum obtained from the thermolysis of 0.01 M di-<u>tert</u>-butyl peroxalate in the presence of 0.05 M (MO)₃PBN in benzene; $a_N \approx 14.18$, $a_B^H = 9.27$ G.

The ratios of III to the normal spin adducts (V) are given below:

RO.	an	aβ	III/VI	Figure	Method/Solvent
iso-BuO	13.97	8.86	~2:1	3a	photolysis of Me2CHCH2ONO/benzene
tert-BuO	14.18	9.27	~1:1	3b	thermal decomposition of DBPO/benzene

Benzoyloxyl radicals give only normal spin adducts from thermal decomposition of benzoyl peroxide: an = 13.36, a_{β}^{H} = 5.37 G in benzene, and the acetoxyl adduct appears to be formed from the reaction with lead

tetracetate: $a_N = 13.86$, $a_\beta^H = 7.41$ G. In benzene, photolysis of (MO)₃PBN in the presence of benzophenone gives only III: $a_N = 15.04$, $a_H = 1.00$, $a_H = 0.94$, $a_H = 0.66$ (all 1H)G in benzene.

In a number of spectra, a simple triplet of three equally intense lines is also observed (see Figure 2(a) and (b). This species is assigned to the acyl nitroxide probably produced from the decomposition of the peroxyl adduct⁶ (aN = 7.47 G in benzene):

In conclusion, (MO)₃PBN may serve as a better spin trap than PBN for the detection and assignment of oxyl radicals. Thus, when only a triplet of doublets with appropriate hfsc's is detected, the spin adducts may be derived from peroxyl or acyloxyl radicals. When essentially only the pattern due to III is observed, the system must have produced hydroxyl radicals. When both III and a triplet of doublets is seen, either hydroxyl and/or alkoxyl radicals were present.

REFERENCES

- E. Finkelstein, G.M. Rosen and E.J. Rauckman, J. Am. Chem. Soc. <u>102</u>, 4994 (1980); *ibid.*, Arch. Biochem. Biophys., <u>200</u>, 1 (1980); *ibid*, Mol. Pharmacol., <u>21</u>, 262 (1982).
- E.G. Janzen, D.E. Nutter, Jr., E.R. Davis, B.J. Blackburn, J.L. Poyer and P.B. McCay, Can. J. Chem., <u>56</u>, 2237 (1978).
- 3. M.J. Turner and G.M. Rosen, J. Med. Chem., 29, 2439 (1986); 31, 428 (1988).
- C.M. DuBose, Jr., Ph.D. Dissertation "Spin Trapping with α-2,4,6-Trimethoxyphenyl N-tert-Butyl Nitrone," University of Georgia, 1985; work performed in the Department of Chemistry and Biochemistry at the University of Guelph.
- 5(a) Rat liver microsomes and NADPH bubbled with oxygen in a phosphate buffer solution containing (MO)₃PBN and paraquat at room temperature. (b) A saturated aqueous solution of (MO)₃PBN was subjected to xanthine/xanthine oxidase and the signal compared to DMPO under the same conditions in phosphate buffer. We gratefully acknowledge the assistance of Don Gibson at OMRF in performing these experiments.
- 6. E.G. Janzen, P.H. Krygsman, D.A. Lindsay and D. Larry Haire, J. Am. Chem. Soc., in press.